Department of Electrical & Electronic Engineering
Imperial College London

EE2 Circuits & Systems

Lab 6 — ADC and Echo Synthesizer

Learning Outcomes

In Lab 6 you will learn to combine the ADC with the DAC and use the DE10 to perform some
simple audio signal processing.

The goal of the final week’s laboratory session is to implement a speech echo effect
synthesizer. You need to obtain from the Lab a 3.5mm audio cable for this lab.

This Lab requires you to use the Sallen-Key LP filter and an inverting amplifier (all on the dual
op-amp MCP6002) and the audio amplifier driving the speaker. You will also be using the DAC
chip from Lab 5, and a new chip MCP3201 ADC. You can find its datasheet on the course
webpage. As in previous labs, all solutions (.sof files) are provided so that you know what is
expected.

Task 1: Analogue to Digital Conversion using the MCP3201 ADC device

In this task, you will use the 10k ohm variable resistor to provide a DC voltage between 0 to
3.3V to the ADC, which also uses SPI to interface to the FPGA. The DC voltage is converter to
a 10-bit digital number, which is displayed on the 7-segment displays.

Step 1: Connect the MCP3201 to the DE10

Just like Lab 5, we need to wire up the MC3201 ADC to the DE-10 Lite FPAG board. Shown
below is a wiring layout added to DAC chip you wired up in Lab 5. The circled parts are
additional circuits on the prototype shield.

O
’ -,
-
- a
o u pp=OvQl (g g v]ias a DAC_SDI AB20 3.3V
- Ji:JNE g ;])OS ™ 2 DAC_SCK Y19 I
3.3V o SSALZ 3¢ [2]SO - A DAC_CS AA19 3.3V
. o ol N0 (g e|L] %) - U TO DE].O
X VRer 11 81V
GND = = REF DD
9 e B S ADC_CLK
O [e D ADC_CLK AA12 «— M[]2 § 7[]CK
e TN .. N ADC_DOUT AA11 ISR I ADC_DOUT
e -- -5 ... ADC_CS Y10 L s -
o M iq this I |© — Vss[]4 IS Apc_cs
O - " s FW - —_"
GND
O sV
9] Zo 0 g S PWM_OUT ABS
TR Vs ———

Note the following:

1. The MCP3201 chip orientation is the opposite of that of the DAC chip. This orientation is
chosen to make wiring up the signals to the header sockets as easy as possible. Pin5to 7
of the MCP3201 is aligned to the FPGA signal sockets.

2. The 10k ohm variable resistor is used to supply a DC voltage to the IN+ input pin of the ADC.

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25) 1

Step 2: The ADC and spi2adc.sv

Go to the course webpage and download the datasheet for the MCP3201 and the Lab6.zip file
which contains SystemVerilog files you need for this lab.

In particular, you will find the file spi2adc.sv, which is a SystemVerilog module that
implements the SPI interface circuit to communicate with the ADC.

Don’t worry about details of how spi2adc.sv works — it is very similar to the working of
spi2dac.sv, which will be explained in a later lecture. Note that although MCP3201 is a 12-bit
converter, the least significant 2 bits are not reliable. Therefore spi2adc.sv only returns the
top 10 bits of the converter results.

3.3v 3.3V MAX10 FPGA
8
W m—————p data_from_adc([9:0]
data_valid
Mcp3201 [EDOUTH L g [e
< ¢ start
5 CcS
) ‘ ~ MAX10_CLK1_50
BE

This is the block diagram showing the interface signals to spi2adc.sv module. The three signals
on the left are the SPI signals communicating with the ADC chip. CLK provides the serial clock
signal at 1MHz. CS signal is asserted low during a conversion. DOUT provides the 10-bit
converted data serially to the FPGA.

To start a conversion, the signal “start” is asserted for one clock cycle (20ns). MCP3201 then
provides the converted data, which is stored in a serial-in/parallel-out shift-register inside the
spi2adc module. Once all bits are received, converted data is driven on data_from_adc and
data_valid is asserted.

Step 3: Test the ADC chip

To verify that the ADC works properly, create the project lab6taskl that implements the
circuit shown in the following diagram. Download from the course webpage the top-level
module lab6taskl.sv. Make sure that you understand the SystemVerilog code and why it
implements the circuit. Note the following:

e The sampling frequency is governed by the frequency of tick, which is at 10kHz.
e The maximum IN+ is nominally 3.3V. However, it is likely to be higher. Use the
multimeter to measure the full-scale voltage range.

ol 10 F1Q-
clktick data_from_adc[Q.O]* data_in[9:0]

| o oo
spi2adc

adc_cs
data_valid «—— | data_valid W
sdata_from_adc ADC_DOUT

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25) 2

bin2bcd_16
data_m[?bo] bed0 7 hexto7seg
clktick data_from_adc[9:0] dk bed1 n hexto7seg
YR e > 5000 |tck10K] bed2 =g hexto7seg
bed3 0 hexto7seg
> sysclk . bdd4 == no connection
spi2adc |JrrEeT"
adc_clk > 3.3V
adc_cs | GBS IN+
data_valid «— | data_valid MCP3201 [
sdata_from_adc |«

ADC_DOUT

lab6taskl.sv schematic

Test yourself (optional extension)

Modify lab6taskl.sv such that the display is the actual voltage in mV. For example, if
the full-scale voltage is 3.312V, the display should show four digits with a value close

to 3.312. Here are some useful hints:

1. All 7-segment displays has an eighth “segment” which is the decimal point (DP).
For example, HEX3 is actually HEX3[7:0] where HEX3[6:0[are the 7 segments,
and HEX3[7] is the decimal point DP. If HEX3[7] = 1’b0, DP will be lid (i.e. low

active).

2. You may assume that a converted digital value of 1000 corresponds to a

voltage of 3.3V.

3. The multiply operator “*” can be used in SystemVerilog for unsigned

multiplication.

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25)

Task 2: DAC working with ADC (test yourself)

Create a new project lab6task2 and design the following circuit as lab6task2.sv. (I
deliberately leave you to create lab6task2.sv yourself to test that you can do it on your
own. Of course, lab6taskl.sv provides a good starting point for you.)

This design takes a 10-bit digital number specified with the 10 sliding switches and

uses the DAC to produce the analogue voltage VOUT.

VOUT is looped back to the input of the ADC, which is converted back to a digital value

and displayed in mV on the 7-segment displays.

sample/sec.

The sampling frequency is 10k

Test your design by changing the values of SW[9:0] and check the displayed voltage.

MAX10 FPGA
50MHz clktick tick_10k
MAX10_CLK1_50 Y oo iy
DAC_CS
—»{ load »>
SW[9:0] data[9:0] . DAC_SCK
— Sp|2dac >
50MHz DAC_SDI
ADC_CLK
—| start >
ADC_CS
bin2bcd_16 |«fmmm spi2adc = >
— P ADC_DOUT
50MHz ——»

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25)

DAC
MCP4921

ADC
MCP3201

V,
pin 8 ouT
= »

pin 2

Task 3: ADC to DAC signal processor platform — allpass processing

The purpose of task 3 is to prepare you for later tasks where the analogue audio signal from
your phone or your computer is sampled with the ADC, stored and processed using the
processor module on the FPGA, then converted back to analogue signal with the DAC to drive
the speaker via the audio amplifier.

Step 1: Preparing the analogue components

Build the following x3 inverting amplifier with the spare op-amp from Lab 5 task 1 where you
built the Sallen-Key LP filter.

3.3V (from prototyping shield)

The signal from a phone or a computer audio socket is around 0.9V peak-to-peak. Therefore,
a gain of x3 would bring this up to the input voltage range of the ADC of around 3V peak-to-
peak. The two 10k resistors provide a DC offset of 1.65V to maximize the voltage swing at
Vauoww. The 3.3V source is taken from the prototype shield 3.3V supply pin.

Step 2: Test the analogue system

Combine the inverting x3 amplifier with the lowpass filter (Lab 5 Task 1) and the audio
amplifier (Lab 5 Task 3) as shown below.

The x3 inverting amplifier produce an audio signal of the right amplitude. The lowpass filter
serves as anti-aliasing filter to prevent frequency components higher than half the sampling
frequency from being “folded back” to the base band. The audio amplifier drives for the 8-
ohm speaker so that you can hear the audio.

Connect the 3.5mm socket to your computer or phone audio socket using the 3.5mm cable.
Play a piece of music or an audio book to supply an audio signal to the analogue system. You
may also download a long audio book file from course webpage (hg2g_full.mp4). If everything
works properly, you should hear the audio signal on the speaker.

frﬁ;dié)ozlgnal x3 7 | sallenkey [1 | PAM8302A
puter amplifierR “| LPFilter - Audio
or phone P Amplifier 8Q

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25) 5

Step 3: Combining FPGA and analogue system

You will be needing the following modules, most of them are either already in Lab 6 folder
which you have downloaded at the start of this Lab Session.

~512

Module Function
lab6task3.sv Top-level design; interface to pins (to download)
spi2dac.sv SPl interface circuit to DAC from Lab 5 (from mylib)
spi2adc.sv SPl interface circuit to ADC from earlier tasks (from mylib)
clktick.sv Clock divider to generate sampling clock ticks at 10kHz (from mylib)
pulse_gen.sv Generate a one-cycle pulse on rising edge of a trigger signal (to download)
allpass.sv “processor” module — this performs “allpass” processing of digital signal

(download)

Study lab6task3.sv. This specifies a system as shown in the following diagram. Make
sure you understand how this works.
Now examine the file allpass.sv. The name of this module is “processor” and is
different from the name of the Verilog file. There is no need to use the same name
except that normally it is more convenient to do so. However, in this case, we have
deliberately used the filename “allpass.sv” to describe its function, while using
“processor” as the module. You can choose “allpass.sv” as the source of the module
“processor” now. Later, you can have a different Verilog file to define a different
“processor”. Which version of “processor” you use in your design is specified in
Project > Add/Remove File in Project.

1.65V

«max 10 _
e _
- data_out[9:0] R spI
® [}
tick_10k 3 interface: MCP4921
%‘_ DAC
50MHz)
S
processor
P data_in[9:0]
) o SPI
data_valid .
—>| N = T | interface MCP3201 2
50MHz start | N € ADC ¢
> o
w
50MHz
50MHz 10kHz
¥ dktick tick_10k

anti-

aliasing

Q filter

\ Loy

Make sure that you understand fully what the Verilog file “allpass.v” does. It actually
does very little. It:

1. Remove the DC offset from the ADC converter data by subtracting 512 from
data_out[9:0] to obtain a 2’s complement value x[9:0].
2. Register input data X to drive output Y, i.e. does nothing except one clock
cycle delay, and hence we call this operation “allpass”.
3. Converts the Y value from 2’s complement to offset binary for the DAC. The
offset now is also 512 as shown below.

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25)

e Build your design for testing on the DE10 Board. To
do this, you should:

1.

Open each .sv file, and use Processing > Analyze
Current File on each of the SystemVerilog file to
ensure that there is not syntax error.

Use Project > Add/Remove File in Project to
include all the .sv files you need. Here we select
allpass.sv to supply the “processor” module. In
the future, you could substitute allpass.sv with
another file for a different processor.

While lab6task3.sv is the current file in the
editor window, use Project > Set as Top-level
Entity to define top is the top-level module.
Check that Device and pin are all assigned
correctly.

0

—
50MHz

Processor — “allpass”

512

processing

offset correction

i

data_out[9:0]

o

en

I— D-FF

o

AR
+
512

>

512

data_in[9:0]

data_valid

Compile the whole design and download the bit-stream file “lab6task3.sof” to

DE10.

Test that it is working properly. You can use three audio files provided on the
course webpage: clapping.mp3 (sequence of single claps), hello.mp3 (I saying
hello), hg2g.mp3 (a long and interesting audio book).

When you get to this part, the experiment framework is shown to be working. It takes audio
samples at 10kHz from the ADC, passes it through the processor module and output the
processed sample to the DAC and produces the output audio on the speaker.

Test yourself

Modify the “processor” module (i.e. you may call the SystemVerilog file times2.sv but the
module name is still “processor”) which amplifies the input by a factor of two. Test that this

is working (i.e. the signal to the speaker should be louder or distorted).

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25)

Task 4: Simple Echo Synthesizer with fixed delay

In this part of the experiment, you will design, implement, and test a circuit that simulates the
effect of a simple echo. The diagram below shows two components of a sound source
reaching its listener: the direct path signal x(t) and the echo signal B x(t-T) which is a weaker
version of x(t) attenuated by a factor 3, bounced off the floor. The echo signal is also delayed
by T relative to the direct-path signal x(t).

Sound y(t) =x(t) + B x(t-T)

source x(t’)
[et »

Echo path

Echo signal

B x(t-T)

Such simple echo can be implemented as signal flow graph as shown below. This involves
three components: a delay block that delays x(t) by K sample periods; a gain block which
multiplies the delayed signal by the factor [3; and the adder.

Sound > + Output with echo

source x(t) v(t)
Delay by K samples

7K

Step 1: Generate a FIFO as an IP Block on Quartus

The delay block can be implemented with a first-in-first-out (FIFO) buffer. A FIFO is found in
all forms of digital systems. The rule is simple: received data are stored in sequence in such a
way that they can be retrieved in the order that they arrived. When a new data item arrives
and the FIFO is not full, it is written to the FIFO. As a data item is retrieved, it is removed from
the FIFO. This allows the send and retrieve rates to be different in the short term. If the send
rate is higher than the retrieve rate, eventually the buffer will become full. If the buffer is full,
it should not receive any more data (otherwise existing stored data would be overwritten). A
“full” status signal is asserted to tell the sender not to send any more data. Similarly if the
buffer is empty, it cannot provide any data for retrieval. An “empty” status signal is used to
indicate that the FIFO has no more data to provide.

Create a new project using modules from Task3. Use the IP Catalog tool, generate a FIFO
component of size 8192 x 10-bit as shown here. The command is:

Tool > IP catalog. On the right of the Quartus window, you will see the IP Catalog pane.
Click: Library > Basic Functions > On Chip Memory > FIFO.

This utility is provided by Intel/Altera to generate Intellectual Property (IP) blocks that use a
combination of the programmable logic fabrics (LEs), and other “hard” blocks such as memory
blocks and DSP blocks.

When asked for the name of the IP variant, enter “fifo”.

Several pages will appear on a pop-up window.

When completing the pop-up forms, use default values except the following:
Page 1: FIFO width = 10 bits, FIFO depth = 8192 words.

Page 2: Untick empty and usedw(] control signal (not needed).

Page 8: Check fifo_inst.v (the instantiation template file).

Once finished, a file fifo.qip will appear in your project folder along with a number of other
files with similar names. To use the fifo in your design, you must include fifo.qip in your
project.

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25) 8

IMPORTANT: Note that Intel/Altera provides many pre-designed IP (Intellectual Property)
blocks for you to use. Fifo is one such design. The IP catalog utility produces Verilog instead
of SystemVerilog specification for IP blocks. That is not a problem. Your design can include
modules designed in either Verilog, SystemVerilog or even VHDL. Mixing different HDL is
allowed.

IP catalog will generate for you a FIFO module with the signals shown in the diagram.
fifo_inst.v provides a “prototype” for instantiation with all the signal names

specified. You may copy and paste this into your design. The signals are: fifo
data[9:0] FIFO input data

q[9:0] FIFO output data il i ®-5
wrreq write request (high to write a word on rising clock edge)] ;;::‘ -
rdreq read request \

full high if FIFO is full] ok

clock FIFO clock signal

Step 2: Test yourself

Implement the simple echo simulator according to the block diagram shown below. The
pulse_gen.sv module produces a single pulse for a rising edge on data_valid. The FSM (shown
in blue) is a challenge for you. Initially the FIFO is empty. If you read a data sample
immediately after one is written, the FIFO will never be filled and it will not implement any
delay function. The FSM is a simple 2-states state machine which makes sure that the FIFO is
only read AFTER it is filled with 8192 samples. Thereafter, the read and write functions work
synchronously and the FIFO will always contain the previous 8192 of audio samples.

To test that your design works, download three different sound files: clapping.mp3,
hello.mp3 and hg2g.mp3, and play them on a computer or a phone in a loop. Listen to the
effect of the echo synthesizer on the speaker. Measure the echo delay with the scope.

Processor — simple echo

Echo synthesizer (feedforward) offset correction

|
i
|
+ ! data_out[9:0]
Pix % :@ ' >
|
|
1
fifo_state] I
FSM [~ 50MHz !
& 7 :
| :
full ! . .
1 x[9:0] + data_in[9:0]
rdreq data[9:0] | et @:
8192x10 '
! -
@—iaro:0] 'O ' 512

1

—» wrreq wren { pulse_gen '7_ data_valid

50MHz i —

Step 3: Test yourself with multiple echoes

The design above produces a single echo. The signal flow graph only has feedforward paths.
Multiple echoes can be produced with a minor modification of the signal flow graph to the
one shown below.

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25) 9

Sound R

» Output with echo

source x(t)

Delay by K samples

Vi K

Processor — multiple

echo

y(t)

data_out[9:0]
—

data_in[9:0]

Echo synthesizer (feedback) E offset correction
I
- L+
X A > — —
y[9:0]
fifo_state .y — comhz +
& M 4—I 512
[x[9:0] +
rdreq data[9:0]
1 Z
81:)"2:2()10 : 512
—» wrreq wren!
50MHz : pulse_gen

data_valid

The delay block now stores the output sample y(t) instead of the input sample x(t). The
attenuated and delayed y(t) is SUBTRACTED from x(t) to produce the next output. (Why must

this be a subtract and not an add?)

Provide a design to implement this architecture

Lab 6 — ADC and Echo Synthesizer (v3.3 —24 Nov 25)

and test it.

10

